Nature and structure of NTA Traditional Homeopathically Manufactured Medicines.

Michel Van Wassenhoven 1*, Martine Goyens 2, Pierre Dorfman 3

1 - Coordinator of DynHom Research Project, Chastre, Belgium. MD. FAMHP. Chaussée de Bruxelles, 128 b5, B-1190 Brussels, Belgium
2 - Pharmaceutical Association for Homeopathy, Wépion, Belgium.

* michelvw@homeopathy.be - https://orcid.org/0000-0002-6164-9001

Abstract

Background: Research using several different methods has demonstrated the materiality, including nanoparticles (NPs) and molecular shapes, in High Homeopathic Potentizations (HHPs). This presentation is a summary of all the evidence gathered by the DynHom research project. Methods: We used the Nuclear Magnetic Resonance (NMR), Nano Tracking Analyzer (NTA), Electronic microscopy (SEM-EDX), Infrared spectroscopy (FTIR), pH measurements to examine dilutions of commonly used homeopathic medicines and controls. The homeopathic medicines tested were specially prepared according to the European pharmacopoeia standards. We compared the homeopathic dilutions/dynamizations with simple dilutions and solvents controls. Results: We observed specific NMR profiles, the presence of particles with specific size distribution and electric fields, dry material (crystals) with a specific molecular structure even more obvious in HHPs. Conclusion: Homeopathic medicines do contain particles with a specific size distribution even in HHPs diluted beyond the Avogadro/Loschmidt limit. They also contain molecules in particular concentrations according to each source material. This specificity can be attributed to the manufacturing and potentization process. This material demonstrates that the step-by-step process (dynamized or not) does not match the theoretical expectations in a dilution process. The starting material, the type of containers and dilution/dynamization method influence the nature and concentration of these NPs.

Keywords: Nanoparticles; Nuclear Magnetic Resonance (NMR); Electronic microscopy (SEM-EDX); Spectroscopy (FTIR); Potentization; Pharmacology;

REFERENCES


